Math    schooL

 

 

Уравнения

 

Уравнения

 

Немного теории

При решении и исследовании олимпиадных уравнений, помимо обычных школьных методов:

  • подстановки,
  • замены переменкой,
  • разложения на множители и других преобразований,

иногда используются соображения монотонности:

если функция у = f (x) – строго возрастает или строго убывает, то уравнения

f (p (x)) = f ( q (x))  и  p (x) = q (x)

равносильны.

При решении уравнений и систем уравнений иногда бывают полезны:

  • геометрическая интерпретация,
  • учёт области допустимых значений переменной или области значений функций, входящих в уравнение,
  • соображения симметрии,
  • идеи цикличности,
  • выход на линейную комбинацию между переменными  и др.

 

Задачи с решениями

1. Решить уравнение:

а) (1 + х + х2) (1 + х + х2 + . . . + х10) = (1 + х + х2 + . . . + х6)2.

б) (x2 – x + 1)4 – 10x(x2 – x + 1)2 + 9x4 = 0.

в) (x + 1)63 + (x + 1)62 (x – 1) + (x + 1)61 (x – 1)2 + . . . + (x – 1)63 = 0.

а) Так как х = 1 – не корень, то умножим обе части уравнения на (х – 1)2. Получим:

3 – 1) (х11 – 1) = (х7 – 1)2,

х11 – 2х7 + х3 = 0,

х4 – 1)2 = 0,

х1 = 0,

х2 = –1,

х3 = +1 – посторонний корень, возникший в результате умножения на (х – 1)2.

Ответ: 0 и –1.

 

б) Пусть  y = (x2 – x + 1)2,  тогда  y2 – 10x2y + 9x4 = 0.  Решив это уравнение относительно y, получим:  

y1 = 9x2,  y2 = x2

Итак, данное уравнение свелось к двум следующим:

(x2 – x + 1)2 = 9x2  и  (x2 – x + 1)2 = x2,

то есть к четырём квадратным уравнениям: 

x2 – x + 1 = 3x,  x2 – x + 1 = – 3x,  x2 – x + 1 = x,  x2 – x + 1 = – x,

решить которые не представляет труда. 

Ответ:  –1, 1,  2 – 3,  2 + 3.

 

в) Умножив обе части уравнения на

(x + 1) – (x – 1) = 2, 

получим  

(x + 1)64 – (x – 1)64 = 0. 

Отсюда  

(x + 1) = ± (x – 1), 

то есть  x = 0.

Ответ: x = 0.

 

2. Решить уравнение:

sin x = х2 + х + 1.

Если х0 не принадлежит числовому промежутку [–1; 0], то  х02 + х0 + 1 > 1 > sin х0.

Если же х0 принадлежит промежутку [–1; 0], то  х02 + х0 + 1 > 0,  а  sin х0 < 0.

Значит, для любого действительного значения х0 имеет место  sin х0 < х02 + х0 + 1,  и исходное уравнение не имеет решений.

Ответ: решений нет.

 

3. Сколько корней имеет уравнение:

(710 + 511) х2 – (1010 + 1311) х + 410 + 711 = 0?

Рассмотрим функцию

f (x) = (710 + 511) х2 – (1010 + 1311) х + 410 + 711.

Это квадратичная функция, графиком которой есть парабола, направленная ветвями вверх. Так как

f (1) = 10 – 11 < 0,

то парабола пересекает ось х в двух точках, а уравнение f (x) = 0 имеет два корня.

Ответ: два корня.

 

4. Известно, что уравнение  ax5 + bx4 + c = 0  имеет три различных корня. Докажите, что и  уравнение  cx5 + bx + a = 0  также имеет три различных корня.

Число  x = 0  не может быть корнем уравнения  

ax5 + bx4 + c = 0,

так как иначе  c = 0,  и уравнение имеет не более двух различных корней, что противоречит условию. Разделив обе части этого уравнения на x5, получаем, что

a + b/x + c/x5 = 0.

Следовательно, если x1, x2 и x3 – различные корни уравнения  ax5 + bx4 + c = 0,  то 1/x11/x2 и 1/x3 – различные корни уравнения  

cx5 + bx + a = 0.

 

5. При каком положительном значении p уравнения  3x2 – 4px + 9 = 0  и  x2 – 2px + 5 = 0  имеют общий корень?

Общий корень указанных уравнений должен быть и корнем уравнения  

(3x2 – 4px + 9) – 3(x2 – 2px + 5) = 0,

равносильного уравнению

2px – 6 = 0.

Значит, х = 3/p.  Подставив это значение х, например, во второе уравнение, получим  9/p2 = 1,  откуда  p = 3.

Ответ: 3. 

 

6. Решить уравнение:

5х + 12х = 13х.

Способ 1.

Легко заметить, что, по крайней мере, одно решение это уравнение имеет, это х = 2. Докажем, что других решений нет. Запишем данное уравнение в виде:

(5/13)x + (12/13)x = 1.

Если x < 2, то

(5/13)х > (5/13)2,  (12/13)х > (12/13)2

и, следовательно,

(5/13)x + (12/13)x > (5/13)2 + (12/13)2 = 1.

Аналогично, если x > 2, то

(5/13)x + (12/13)x < (5/13)2 + (12/13)2 = 1.

Итак, х = 2 – единственный корень.

 

Способ 2.

Записав уравнение в виде

(5/13)x + (12/13)x = 1,

видим, что имеет единственное решение х = 2. Действительно, число х = 2  удовлетворяет   уравнению. С другой стороны, функция

f (х) = (5/13)x + (12/13)x

является строго убывающей, потому что является суммой двух строго убывающих функций, и, следова­тельно, значение 1 принимает только один раз при х = 2.

 

Способ 3.

Можно ввести обозначения:

5/13 = sin α,  12/13 = cos α.

Тогда уравнение

(5/13)x + (12/13)x = 1,

равносильное исходному, примет следующий вид:

(sin α)x + (cos α)x = 1,

а это уравнение имеет единственное решение х = 2.

Ответ: 2.

 

7. Решить уравнение:

а) 8х (3х + 1) = 4.

б) 4 lg x – 32 + x lg 4 = 0.

а) Число х = 1/3 является решением данного уравнения. Докажем, что других решений нет.

При х > – 1/3 функции

у1 (х) = 8х  и  у2 (х) = 3х + 1

принимают положительные значения и возрастают, следовательно, их произведение (левая часть уравнения) также является возрастающей функцией.

Поэтому на промежутке (– 1/3; + ∞) уравнение не может иметь более одного решения.

Далее, при х <1/3 имеем у1(х) > 0, у2(х) < 0, а значит,  у1(х) · у2(х) < 0.  

Поэтому на промежутке (– ∞; – 1/3] уравнение не имеет решений. Таким образом, получаем единственное решение: 1/3.

Ответ: 1/3

 

б) Область допустимых значений х является  х > 0  и х ≠ ±1.  Имеет место

4 lg x = x lg 4 .

Для доказательства этого равенства достаточно прологарифмировать обе части равенства по основанию 10. В таком случае

4 lg x – 32 + 4 lg x = 0,

4 lg x = 16,

4 lg x = 42,

lg x = 2,

х = 100.

Ответ: 100.

 

8. Докажите, что уравнение :

а) х10 – х7 + х2 – х + 1 = 0  не имеет действительных корней;

б) (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0  для любых действительных значений a, b, c имеет хотя бы одно решение;

в) х4 + 5х3 + 6х2 – 4х – 16 = 0  имеет ровно два решения.

а) Рассмотрим функцию

f (х) = х10 – х7 + х2 – х + 1.

При х0 ∈ (– ∞; 0] имеем f (х0) > 0.

При х0 ∈ (0; 1) имеем f (х0) = (1 – х0) + (х02 – х07) + х010 > 0.

При х0 ∈ [1; + ∞) имеем f (х0) = (х010 – х07) + (х02 – х0) + 1 > 0.

Значит для любого действительного х0 верно, что f (х0) > 0 и, следовательно, исходное уравнение не имеет решений.

 

б) Обозначим

f (x) = (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a).

Без ограничения общности можно считать, что а < b < с.

Если а = b или b = с, то  f (b) = (b – c)(b – a) = 0.

Если же а < b < с, то f (b) < 0 и f (а) = (а – b)(а – c) > 0.

Так как функция f(x) непрерывна, то существует такое число х0 из промежутка (а; b), что

f(x0) = 0,

что и требовалось доказать.

Замечание. Это уравнение можно встретить в задаче с несколько иной формулировкой на странице Квадратный трёхчлен.

 

в) Докажем, что функция

f (x) = х4 + 5х3 + 6х2 – 4х – 16

принимает значение 0 ровно в двух точках. Для этого исследуем производную этой функции

f′(x) = 4х3 + 15х2 + 12х – 4 = (x + 2)2(4х – 1).

При х < –2 и при –2 < х < 1/4 имеет место неравенство f′(x) < 0,

при х > 1/4 – неравенство f′(x) > 0. Поэтому функция f(x) убывает па интервале (– ∞; 1/4) и возрастает на интервале (1/4; + ∞).

Поскольку

f (–10) > 0,  f (10) > 0  и  f (1/4) < f (0) < 0,

то на каждом из двух указанных интервалов функция f (х) однажды принимает значение 0, а уравнение f (х) = 0 имеет ровно два решения, что и требовалось доказать.

 

9. Сколько корней на отрезке  [0, 1]  имеет уравнение  8(1 – 2x2) (8x4 – 8x2 + 1) = 1?

Заметим, что  

8x4 – 8x2 + 1 = 2(2x2 – 1)2 – 1. 

Сделав замену  x = cos φ, исходное уравнение перепишем в виде: 

8 cos φ cos 2φ cos 4φ = – 1.

Умножая обе части на sin φ, получим 

sin 8φ = – sin φ, 

8φ = – φ + 2kπ  или  8φ = π + φ + 2kπ,

то есть

x = cos 2kπ/9   или   x = cos (π/7 + 2kπ/7). 

На отрезке  [0, 1]  лежат четыре корня уравнения:  

cos 2π/9, cos 4π/9, cos π/7  и  cos 3π/7

(корень  x = 1  – посторонний, он возник при умножении на sin φ).

Замечание: Всего указанное уравнение 7-й степени имеет 7 корней: к указанным в решении добавляются еще 

cos 2π/3 = – ½,  cos 8π/9 = – cos π/9  и  cos 5π/7 = – cos 2π/7

Ответ: Четыре корня.

 

10. Решить уравнение:

а) х4 + 8х3 + 18х2 + 11х + 2 = 0:

б) х4 – 4х3 – 1 = 0.

а) Разложим левую часть уравнения на множители. Для этого представим её в виде:

х4 + 8х3 + 18х2 + 11х + 2 = (х2 + ах + b) (х2 + cх + d),

где a, b, c, d подберём методом неопределённых коэффициентов. Имеем:

х4 + 8х3 + 18х2 + 11х + 2 = х4 + (a + c) x3 + (b + d + ac) x2 + (ad + bc) x + bd.

Одно из решений системы

a + c = 8,

b + d + ac = 18,

ad + bc = 11,

bd = 2;

подбираем методом подбора:

a = 5, b = 2, c = 3, d = 1,

(находить все её решения не обязательно). Значит,

х4 + 8х3 + 18х2 + 11х + 2 = (х2 + 5х + 2) (х2 + 3х + 1),

а исходное уравнение равносильно совокупности уравнений:

х2 + 5х + 2 = 0  и  х2 + 3х + 1 = 0,

решение которых элементарно.

Ответ: х1,2 = –5 ±17/2,  х3,4 = –3 ±5/2.

 

б) Введём новую переменную

t = x – 1,  x = t + 1,

и получим

(t + 1)4 – 4(t + 1)3 – 1 = 0,

t4 – 6t2 – 8t – 4 = 0.

Разложим левую часть уравнения на множители. Для этого представим её в виде:

t4 – 6t2 – 8t – 4 = (t2 + а)2 – (bt + c)2,

где a, b, c подберём методом неопределённых коэффициентов. Имеем:

t4 – 6t2 – 8t – 4 = t4 + (2a + b2) t2 – 2bc t + a2 – c2.

Найдём одно из решений системы

2a – b2 = –6,

bc = 4,

a2 – c2 = –4.

Решая эту систему находим:

а = –2,  b = 2,  с = 22 .

Значит,

t4 – 6t2 – 8t – 4 = (t2 – 2)2 – (2t + 22)2 = (t22t – 22 – 2) (t2 + 2t + 22 – 2) = 0,

а уравнение

t4 – 6t2 – 8t – 4 = 0

равносильно совокупности уравнений:

t22t – 22 – 2 = 0  и  t2 + 2t + 22 – 2 = 0,

первое из которых имеет корни:

t1,2 = 2 ± 10 + 8√2/2 ,

а второе корней не имеет.

И, наконец, x1,2 = t1,2 + 1 = 2 ± 10 + 8√2/2 + 1 =  2 + 2 ± 10 + 8√2/.

Ответ: x1,2 = 2 + 2 ± 10 + 8√2/2.

 

Задачи без решений

1. Решить уравнение  2 sin х = 5х2 + 2х + 3.

 

2. Решить уравнение  x3 + x2 + x + 1/3 = 0.

 

3. Решить уравнение  41 – x + 41 + x = 4.

 

4. Сколько действительных корней имеет уравнение  х13 = а (1 + х14)  для каждого действительного а?

 

5. Доказать, что уравнение  x – а sin x – b = 0  при 0 < a < 1, b ∈ R имеет не более одного действительного корня.     

 

Группа Математика для школы|math4school.ru ВКонтакте

Давно собирался и вот, наконец! Примерно так выглядит история нашей группы ВКонтакте. Сомнения в необходимости её существования отброшены, и первые материалы сообщества уже выложены.

Нам 4 года!

14 марта 2016 года сайту Математика для школы|math4school.ru исполнилось 4 года. Поскольку число 4 для нашего сайта не чужое, мы решили подвести некоторые итоги.

Новый формат главного меню

Расширены функциональные возможности главного меню.

Галерея на сайте math4school.ru
Приглашаю посетить Галерею, – новый раздел на сайте.

444 года со дня рождения Иоганна Кеплера

27 декабря 2015 года исполнилось 444 года со дня рождения Иоганна Кеплера.